质点运动学

极坐标系 速度与加速度

 $\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$ $\vec{a} = (\ddot{r} - r\dot{\theta}^2)\hat{r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta}.$ 求导: $\frac{d\hat{r}}{dt} = \dot{\theta}\hat{\theta}$.

曲率半径 自然坐标系 $R(t) = \frac{v^3(t)}{|\vec{a}(t) \times \vec{v}(t)|}.$

质点动力学

牛顿第二定律 微分方程的一种常见处理 $f(x) = m\ddot{x} \Rightarrow f(x)dx = m\ddot{x}dx = m\ddot{x}dt = m\dot{x}d\dot{x}$

非惯性参考系

记号声明 0 表示非惯性系相对于惯性系的量, '表示物体相 对于非惯性系的量

平动转动参考系 绝对微商(惯性系中)(*d* 是任意向量) $\frac{D\vec{a}}{Dt} = \frac{d\vec{a}}{dt} + \vec{\omega} \times \vec{a}.$ 虚拟力

 $\vec{f_i} = \vec{f_a} + \vec{f_c} + \vec{f_{cor}} + \vec{f_{\Delta\omega}}$ $= -m\vec{a}_0 - m\vec{\omega} \times (\vec{\omega} \times \vec{r'}) - 2m\vec{\omega} \times \vec{v'} - m\frac{D\vec{\omega}}{Dt} \times \vec{r'}.$ 其中 \vec{f}_a 是平移惯力, $\vec{f}_{\Delta\omega}$ 是角速度变化产生的惯性力.

动量定理

质心动量定理 C 表示质心的量, \vec{F}_{ex} 是相对于质点系的外

 $\int_{-t}^{t} \vec{F}_{ex} dt = m_{C} \vec{v}_{C} - m_{C} \vec{v}_{C0}.$

变质量物体 \vec{u} 是附着体的初速度, \vec{v} 是主体的初速度, F 是 主体和附着体所受的合力 $m\frac{d\vec{v}}{dt} = (\vec{u} - \vec{v})\frac{dm}{dt} + \vec{F}.$

两体碰撞 两体 $m_1, u_1 与 m_2, u_2$,完全弹性碰撞后有: $\begin{cases} v_1 = \frac{m_1 - m_2}{m_1 + m_2} u_1 + \frac{2m_2}{m_1 + m_2} u_2 \\ v_1 = \frac{2m_1}{m_1 + m_2} u_1 + \frac{m_2 - m_1}{m_1 + m_2} u_2 \end{cases}$

动能定理

质点系动能定理 要考虑内力做功 $E_k(t) = E_k(t_0) = A_{ex} = A_{in}$

有心力 有心力是保守力,可以定义势能

质心系 柯尼希定理: 体系动能等于质心动能与体系相对于 质心系动能之和

 $E_k = \frac{1}{2} m_C v_C^2 + E_{kC}.$

用动能定理时,选择质心系,惯性力做功为0,不需要考虑惯 性力所做的功。

两体问题 两体间作用力 \vec{F} , 约化质量 $\mu = \frac{m_1 m_2}{m_1 + m_2}$, 相对

位矢 \vec{r} , 则: $\mu \frac{d^2 \vec{r}}{dt^2} = \vec{F}, E_{kC} = \frac{1}{2} \mu v^2, \vec{L} = \mu \vec{r} \times \vec{v}.$

该表达式表示将参考系 (设为 S) 选择与任意一物体 (假设为 m_2) 相对静止时, $m_1 = \mu$,即可在 S 系中进行简单的运算 (将S 系视为惯性系), 且S 中求得的机械能即为质心系中的

两体碰撞 两体 m_1, u_1 与 m_2, u_2 ,恢复系数 $e = \frac{v_2 - v_1}{u_1 - u_2}$ $\Delta E_k = \frac{1}{2}\mu(e^2 - 1)(u_1 - u_2)^2.$

角动量定理

角动量与力矩 动量 \vec{p} ,角动量 \vec{L} ,力矩 \vec{M} $\vec{L} = \vec{r} \times \vec{p}, \vec{M} = \frac{d\vec{L}}{dt} = \vec{r} \times \vec{F}.$

质点系角动量守恒 外力给定点的总外力矩和为 0, 角动量 守恒

质心系角动量 体系角动量等于质心的角动量与体系相对于 质心的角动量之和

 $\vec{L} = \vec{L}_C + \vec{L}_{CM}.$

万有引力

能量 轨道半长轴为 a 物体的总能量, 角动量 l = mh, \dot{r} 是 径向速度,物体角动量守恒,所以 l,h 均为定值 $a = -\frac{GMm}{2}$.

$$a = -\frac{GMm}{2E}$$
.
$$E = \frac{1}{2}m\dot{r}^2 + U_{eff}$$

$$= \frac{1}{2}m\dot{r}^2 + \frac{L^2}{2mr^2} - G\frac{Mm}{r}$$
. $E \ge 0$,物体做开放轨道运动; $E < 0$,物体做闭合轨道运动。

比内公式
$$h^2u^2(\frac{\mathrm{d}^2u}{\mathrm{d}\theta^2}+u)=-\frac{f}{m}.$$

$$(h=\frac{L}{m}=r^2\dot{\theta},u=\frac{1}{r},\ f\ \text{为有心力})$$

轨道定律 $r = \frac{p}{1 + \epsilon \cos \theta}$. 其中 $p = \frac{L^2}{GMm^2}$, $\epsilon = \sqrt{1 + \frac{2EL^2}{G^2M^2m^3}}$. 可根据 E 的正负判 断离心率 ϵ 的取值,进而确定轨道形状

刚体

常用转动惯量 细棒关于中心 $I=\frac{1}{12}ml^2$,关于端点 $I=\frac{1}{12}ml^2$

圆环关于轴线 $I=mR^2$,圆柱关于轴线 $I=\frac{1}{2}mR^2$. 圆球关于直径 $I=\frac{2}{5}mR^2$,球壳关于直径 $I=\frac{2}{3}mR^2$. 薄板关于中心垂直轴 $I = \frac{1}{12}m(a^2 + b^2)$,关于中心水平轴 $I = \frac{1}{12}ma^2.$

平行轴定理 $I_D = I_C + md^2$.

垂直轴定理 $I_z = I_x + I_y$.

直线运动	定轴转动
x	ϕ
$v = \frac{\mathrm{d}x}{\mathrm{d}t}$	$\omega = \frac{\mathrm{d}\phi}{\mathrm{d}t}$
$a = \frac{\mathrm{d}v}{\mathrm{d}t}$	$\beta = \frac{\mathrm{d}\omega}{\mathrm{d}t}$
m	$I = \sum \Delta m_i R_i^2$
F = ma	$M = I\beta$
$E_k = \frac{1}{2}mv^2$	$E_k = \frac{1}{2}I\omega^2$
p = mv	$L = I\omega$

平面平行运动 $\vec{F}_{ex} = m\vec{a}_C, M_z = I_z\beta, E_k = \frac{1}{2}mv^2 + \frac{1}{2}I_z\omega^2.$

纯滚动条件 $v_C = R\omega, a_C = R\beta.$

进动 $\vec{M} = \vec{\Omega} \times \vec{L}$.(M 是力矩, Ω 是进动角速度, L 是自转 角动量 $L = I\omega$, ω 是自转角速度).

振动和波

简谐振动 $m\ddot{x} = -kx$, $\omega = \sqrt{\frac{k}{m}}$. 振动方程: x =
$$\begin{split} &A\cos(\omega t + \phi).\\ &E = \frac{1}{2}m\omega^2 A^2, \bar{E_k} = \bar{E_p} = \frac{E}{2}. \end{split}$$

一维保守力定义势能 V(x),有 $k = \frac{\mathrm{d}^2 V}{\mathrm{d}x^2}|_{x=x_0}$.

振动的合成 同方向相近频率的振动的合成:

 $x_1 = A\cos(\omega_1 t + \phi_1), x_2 = A\cos(\omega_2 t + \phi_2).$

$$x = x_1 + x_2 = 2A\cos\left(\frac{\omega_1 - \omega_2}{2}t + \frac{\phi_1 - \phi_2}{2}\right) \cdot \cos\left(\frac{\omega_1 + \omega_2}{2}t + \frac{\phi_1 + \phi_2}{2}\right).$$

 $u = \frac{|\omega_1 - \omega_2|}{2\pi} = |\nu_1 - \nu_2| = \Delta \nu$. 这一现象称之为拍, $\Delta \nu$ 称

阻尼振动 $m\ddot{x} = -kx - \gamma \dot{x} \Rightarrow \ddot{x} + 2\beta \dot{x} + \omega^2 x = 0$. 其中 γ 为 阳力系数, β 为阳尼系数.

过阻尼
$$(\beta > \omega)$$
: $x = e^{-\beta t} (A_1 e^{\sqrt{\beta^2 - \omega^2 t}} + A_2 e^{-\sqrt{\beta^2 - \omega^2 t}})$.
欠阻尼 $(\beta < \omega)$: $x = A_0 e^{-\beta t} \cos(\omega_f + \phi)$, $\omega_f = \sqrt{\omega^2 - \beta^2}$.
临界阻尼 $(\beta = \omega)$: $x = (A_1 + A_2 t)e^{-\beta t}$. 品质因数 $Q = \frac{\omega}{2\beta}$

受迫振动 $m\ddot{x} = -kx - \gamma \dot{x} + F_0 \cos \omega' t \Rightarrow \ddot{x} + 2\beta \dot{x} + \omega^2 x =$ $F_0 \cos \omega' t$.

欠阻尼
$$x = A_0 e^{-\beta t} \cos(\omega_f + \phi) + B \cos(\omega' t - \phi')$$

 $tan\phi' = \frac{2\beta\omega'}{\omega^2 - \omega'^2}, B = \frac{F_0}{\sqrt{(\omega^2 - \omega'^2)^2 + 4\beta^2\omega'^2}}.$
能量共振: $\omega = \omega', B_r := B = \frac{F_0}{2\beta\omega}, \tan\phi = \infty, x = 0$

 $\frac{F_0}{2\beta\omega}\sin\omega t$. 此时驱动力功率最大,速度最大.

振幅共振: $\omega' = \sqrt{\omega^2 - 2\beta^2}$. 此时振幅最大

波 运动学: $y = A\cos(\omega t - kx + \phi)$

波的传播 惠更斯原理,折射、反射定律

波的叠加 相干波和非相干波叠加:

驻波: 介质中反向行进的相干平面简谐波叠加后的合成波实 际上是一种振动,不再是振动的传播,成为驻波,驻波是各点 振幅 $(|A'| = |2A\cos\left(kx + \frac{\phi_1 - \phi_2}{2}\right)|)$ 不同的简谐振动的集

|A'| = 2A 的位置称为波腹, A' = 0 的位置称为波节, 相邻波 腹(节)间距离 $\frac{\lambda}{2}$

群速度: 非相干波 $(\frac{\omega_1^k}{k_1} = u_1, \frac{\omega_2}{k_2} = u_2)$ 叠加合成波包络线的 峰值传播速度: $u_g = \frac{\omega_1 - \omega_2}{k_1 - k_2}$.

多普勒效应 在观察者和波源方向上,观察者以 v_D 运动,波 源以 v_s 运动,两者趋紧的方向为正则: ν' 1 + $\frac{v_D}{}$

 $_2$ 力学 $_{
m H}$ 期末大抄

常见的波 波动方程 $\frac{\partial^2 y}{\partial t^2} = v^2 \frac{\partial^2 y}{\partial x^2}$. 弹性棒上的纵波: $v = \sqrt{\frac{Y}{\rho}}$, Y 为杨氏模量, $F(x) = SY \frac{\mathrm{d}y}{\mathrm{d}x}|_x$, ρ 为密度.

弦上横波: $v = \sqrt{\frac{N}{\rho}}$, N 为切变模量.

声波(纵波): $v = \sqrt{\frac{p}{\rho}}$, p 为空气压强(空气的杨氏模量)

电磁波: $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$ 浅水波: $v = \sqrt{gh}$. 深水波: $v = \sqrt{\frac{g\lambda}{2\pi}}$.

流体

流体静力学方程 \vec{f} 是单位质量上的力 (加速度): $\rho \vec{f} = \vec{\nabla} p, dp = \frac{\partial p}{\partial x} dx + \frac{\partial p}{\partial y} dy + \frac{\partial p}{\partial z} dz.$

定常流动 在欧拉法描述下 v 不随时间变化。

连续性方程: $\rho \vec{v} \cdot \Delta \vec{S} = const.$

伯努利方程:

$$\frac{1}{2}\rho v^2 + \rho U + p = const.$$
(其中 U 为单位质量的势能)

粘滞流体 粘滞力 (侧面): $F = \eta \Delta S \frac{\mathrm{d}v}{\mathrm{d}z}$. 泊肃叶公式: $Q = \int_0^R v 2\pi r \mathrm{d}r = \frac{\pi(p_1 - p_2)R^4}{8l\eta}$. 雷诺数: $R_e = \frac{\rho v r}{\eta}$. $R_e > 4000$ 湍流, $R_e < 2000$ 层流,

 $2000 < R_e < 4000$ 不稳定.

斯托克斯公式: 小球在粘滞流体中低速运动:

粘滯阻力: $f = 4\pi r v \eta$. 压差阻力: $f' = 2\pi r v \eta$.

相对论

记号声明
$$\gamma = \frac{1}{\sqrt{1-\beta^2}}, \ \beta = \frac{v}{c}.$$

洛伦兹变换 K' 系以 v 沿 x 轴相对 K 系运动

$$\begin{cases} x' = \gamma(x - vt) \\ y' = y \\ z' = z \\ t' = \gamma(t - \frac{v}{c^2}x) \end{cases} \begin{cases} x = \gamma(x' + vt) \\ y = y' \\ z = z' \\ t = \gamma(t' + \frac{v}{c^2}x) \end{cases}$$

$$\begin{cases} u'_x = \frac{u_x - v}{1 - u_x \frac{v}{c^2}} \\ u'_y = \frac{u_y}{\gamma(1 - u_x \frac{v}{c^2})} \\ u'_z = \frac{u_z}{\gamma(1 - u_x \frac{v}{c^2})} \end{cases} \begin{cases} u_x = \frac{u'_x + v}{1 + u_x \frac{v}{c^2}} \\ u_y = \frac{u'_y}{\gamma(1 + u_x \frac{v}{c^2})} \\ u_z = \frac{u'_z}{\gamma(1 + u_x \frac{v}{c^2})} \end{cases}$$

多普勒效应 $f' = \frac{1}{\gamma(1-\beta\cos\phi)}f$.

相对性 时缓: $\Delta t = \gamma \Delta t'$, 尺缩 $\ell = \sqrt{1 - \beta^2} \ell'$.

相对论力学 设物体静质量 m_0 , 速度 v $\begin{cases} m = \gamma m_0 \\ p = mv \\ E = mc^2 \approx m_0 c^2 + \frac{1}{2} m_0 v^2 \\ E^2 = p^2 c^2 + m_0^2 c^4 \end{cases}$

| 对静质量为零的粒子有 E = pc.

补充

球冠体积
$$V = \frac{\pi 2h^2}{3}(3R - h).$$

三向量叉乘 $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b}).$

常用常量 重力加速度 $g=9.8 \mathrm{m\cdot s^{-2}}$,光速 $c=3\times 10^8 \mathrm{m\cdot s^{-1}}$. 万有引力常量 $G=6.67\times 10^{-11} \mathrm{m^3\cdot (kg\cdot s)^{-2}}$.

地球质量 $M = 6 \times 10^{24} \text{kg}$,半径 R = 6371 km.

太阳质量 $M_S = 2 \times 10^{30} \text{kg}$.

15 摄氏度,1atm 的空气: $p=10^5 {\rm N\cdot m^{-2}}, \rho=1.2 {\rm kg\cdot m^{-3}}.$ 实际声速 $v=340 {\rm m\cdot s^{-2}}.$

* 祝考试顺利! *