概率论与数理统计

古典概型

计数原理 加法原理、乘法原理. 从含有 n 个元素的盒子中:

- 1. 有放回地取出 r 个元素组成的可重复排列的不同方式 有 n^r 种;
- 2. 无放回地取出 r 个元素组成的不重复排列的不同方式 有 $P_n^r = \frac{n!}{r!}$ 种(排列数),特别地,当 r = n 时称 为全排列;
- 3. 不放回地选取 r 个元素的组合有 $C_n^r = \frac{n!}{r!(n-r)!}$ 种 (组合数);
- 4. 有放回地选取 r 个元素的组合有 C_{n+r-1}^n 种(重复组合数).

盒子模型 把 n 个球放到不同编号的 n 个盒子中:

- 1. 球可辨,每个盒子中不限球的个数,不同的放法个数为 n^r (重复排列);
- 2. 球可辨,每个盒子中至多放一个球,不同的放法个数为 $\frac{n!}{(n-r)!}$ (选排列);
- 3. 球不可辨,每个盒子中不限球的个数,不同的放法个数为 C_{n+r-1}^r (隔板法);
- 4. 球不可辨,每个盒子中至多放一个球,不同的放法个数为 C_n^r .

多组组合 把 n 个不同的元祖分为有序的 k 个部分,第 i 部分有 r_i 个元素,不同的分法个数为 $\frac{n!}{r_1!r_2!\dots r_k!}$ (多项式系数).

不尽相异元素的排列 有n个元素,属于k个不同的类,同类元素之间不可辨认,第i类元素有 n_i 个. 把这些元素排成一列,不同的排法个数为 $\frac{n!}{n_1!n_2!\dots n_k!}$.

概率的性质

- 1. $P(\varnothing) = 0$;
- 2. (两两不相容事件)有限可加性;
- 3.(子集事件)可减性;
- 4. (子集事件) 单调性;
- 5. $P(\bar{A}) = 1 P(A)$;

6. 容斥原理:

$$P\left(\bigcup_{k=1}^{n} A_{k}\right) = \sum_{m=1}^{n} (-1)^{m-1} \sum_{1 \le i < j \le n} P(A_{i} \dots A_{j})$$

其中第 m 项中概率函数的变量为 m 个事件的并.

7. 次可加性

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) \leqslant \sum_{n=1}^{\infty} P(A_n)$$

8. 上连续性、下连续性.

条件概率

定义
$$P(A|B) = \frac{P(AB)}{P(B)}$$
.

乘法公式 P(AB) = P(A)P(B|A), 归纳可得

$$P(A_1 A_2 ... A_n) = P(A_1) P(A_2 | A_1) ... P(A_n | A_1 A_2 ... A_n)$$

全概率公式 若 $\{B_n\}$ 是样本空间的一个完备事件群(无交、并为 Ω),则有

$$P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$$

Bayes 公式 若 $\{B_n\}$ 是样本空间的一个完备事件群 (无交、并为 Ω),则有

$$P(B_i|A) = \frac{P(B_iA)}{P(A)} = \frac{P(A|B_i)P(B_i)}{\sum_{i=1}^{n} P(A|B_i)P(B_i)}$$

独立性

定义 两个事件满足 P(AB) = P(A)P(B), 则称 A, B 相互 独立. 更一般地,

$$P\left(\bigcap_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} P(A_i)$$

等价命题

- 1. P(B|A) = P(B);
- 2. A 或 \bar{A} 与 B 或 \bar{B} 相互独立. 更一般地,令 $\tilde{A}_i = A_i$ 或 \bar{A}_i ,有放回地取出

$$P\left(\bigcap_{i=1}^{n} \tilde{A}_{i}\right) = \prod_{i=1}^{n} P(\tilde{A}_{i})$$

随机变量

离散型随机变量

概率密度函数 (pmf) 如果随机变量 X 只能取有限多个或可数多个值,那么称 X 为离散型随机变量,设 $\{x_k\}$ 为 X 所有取值的集合,则称

$$P(X = x_k) = p_k$$

为离散型随机变量 X 的分布律或概率质量函数 (pmf).

无记忆性 以所有正整数为取值集合的随机变量 X 服从几何分布 Ge(p), 当仅当

$$P(X > m + n | X > m) = P(X > n)$$

这个性质被称为几何分布的无记忆性.

Poisson 逼近定理 设一族随机变量 $X_n \sim B(n, p_n)$, 若当 $n \to \infty$ 时, $np_n \to \lambda > 0$, 则有

$$\lim_{n \to \infty} P(X_n = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

实际应用中, $n \ge 30$, $np_n \le 5$ 时即可应用

连续型随机变量

累计分布函数 (cdf) 设 X 为一随机变量, $x \in \mathbb{R}$, 称

$$F(x) = P(X \leqslant x)$$

为随机变量 X 的(累计)分布函数.

概率密度函数 (pdf) 若存在可积的非负函数 $f(x) \ge 0$,使得

$$\forall x \in \mathbb{R}, \quad F(x) = \int_{-\infty}^{x} f(t) dt$$

则称 X 为连续型随机变量,f(x) 称为分布函数或**概率密度 函数 (pdf)**,记为 $X \sim f(x)$.

概率密度函数的性质

- 1. 恒为非负;
- $2. \int_{-\infty}^{+\infty} f(x) \mathrm{d}x = 1;$

3. 对任意可测集合 $A \subseteq \mathbb{R}$,有

$$P(X \in A) = \int_{A} f(x) dx$$

- 4. 若 f(x) 在 x_0 连续,则有 $F'(x_0) = f(x_0)$;
- 5. $\forall x \in \mathbb{R}, P(X = x) = 0$

正态分布的性质 主要针对其概率密度函数的性质:

- 1. "钟型"曲线,两头小,中间大,关于 $x = \mu$ 对称;
- 2. 最大值在 $x = \mu$ 处取得 $f(\mu) = \frac{1}{\sqrt{2\pi}\sigma}$;
- $3. x = \mu \pm \sigma$ 为拐点,图形以 x 轴为渐进线;
- 4. μ 决定图形位置, σ 决定图形形状.

标准正态分布 标准正态分布 $X \sim N(0,1)$ 的概率密度函数记为 $\phi(x)$,累计分布函数记为 $\Phi(x)$,显然有 $\Phi(-x) = 1 - \Phi(x)$.

正态分布标准化 对于正态分布 $X \sim N(\mu, \sigma^2)$,有下式恒成立

$$F(x) = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

随机变量函数的分布 设 $X \sim f(x)$,随机变量 Y = g(X),则有

$$F_Y(y) = \int_{g(x) \le y} f(x) dx$$

若 g(x) 在各个区间 I_i 上严格单调且反函数可导时,设 X = h(Y),则有

$$f_Y(y) = \sum_i f(h(y))|h'(y)|I_i(y)$$

多维随机变量

联合分布函数 (joint cdf) 设 (X,Y) 是二维随机变量,称二元函数

$$F(x,y) = P(X \leqslant, x, Y \leqslant y)$$

为 (X,Y) 的**联合分布函数**.

联合概率密度函数 (joint pdf) 设 $(X,Y) \sim F(x,y)$,若存在可积的非负函数 $f(x,y) \leq 0$,使得

$$\forall (x,y) \in \mathbb{R}^2, \quad F(x,y) = \int_{-\infty}^x \int_{-\infty}^y f(u,v) du dv$$

则称 (X,Y) 为而为连续型随机变量, f(x,y) 称为**联合概率密 度函数**.

边缘分布 设 $(X,Y) \sim F(x,y)$, $X \sim F_X(x)$, $Y \sim F_Y(y)$, 更一般的, 若对于 n 维随机变量 $X \sim f_X(x)$, 存在 n 维随 则称 $F_X(x)$ 和 $F_Y(y)$ 为 (X,Y) 或 F 的边际分布 (marginal distribution). 对应的 $f_X(x)$ 和 $f_Y(y)$ 称为 f(x,y) 的边际概 率密度函数 (marginal pdf). 且有

$$F_X(x) = \lim_{y \to \infty} F(x, y), \quad f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

条件概率密度函数 (conditional pdf) 给定 Y = y 条件下 随机变量 X 的条件概率密度函数为

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

n **维情况** 对于一组随机变量 $(X_1, X_2, \ldots, X_n) \sim F$, 记 $U = \{X_1, X_2, \dots, X_k\}, V = \{X_{k+1}, X_{k+2}, \dots, X_n\}, \bigcup U$ 的边缘分布为

$$F_{U}(u) = F(x_1, x_2, \dots, x_k, \infty, \infty, \dots, \infty)$$

边缘密度函数为

$$f_{oldsymbol{U}}(oldsymbol{u}) = \int_{\mathbb{R}^{n-k}} f(oldsymbol{u}, oldsymbol{v}) \mathrm{d}oldsymbol{v}$$

n 维随机变量的边际分布函数有 n-2 个. 给定 V=v 条件 下随机变量 U 的条件概率密度函数为

$$f_{U|V}(u|v) = \frac{f(u,v)}{f_V(v)}$$

随机变量独立性 若 $(X,Y=) \sim F(x,y), X \sim F_X(x), Y \sim$ $F_Y(y)$, 若

$$\forall (x, y) \in \mathbb{R}^2, \quad F(x, y) = F_X(x)F_Y(y)$$

则称随机变量 X,Y 相互独立. 可以推广到 n 维情况.

随机向量函数的分布 一维情况 Z = g(X,Y),则有

$$F_Z(z) = \iint_{q(x,y) \le z} f(x,y) dxdy$$

二维情况 $(Z_1, Z_2) = (g_1(X, Y), g_2(X, Y))$,则有

$$F_{\mathbf{Z}}(z_1, z_2) = \iint_{q_1(x,y) \leqslant z_1 q_2(x,y) \leqslant z_2} f(x, y) \mathrm{d}x \mathrm{d}y$$

若 g_1, g_2 是一一映射, $(x, y) = (h_1(z_1, z_2), h_2(z_1, z_2))$, 则有

$$f_{\mathbf{Z}}(z_1, z_2) = f(h_1(z_1, z_2), h_2(z_1, z_2)) \left| \frac{\partial(h_1, h_2)}{\partial(u, v)} \right|_{(u, v) = (z_1, z_2)}$$

机变量函数 Y = g(X) , 且 $g: \mathbb{R}^n \to \mathbb{R}^n$ 是一一映射, 则

$$f_{\boldsymbol{X}}(\boldsymbol{y}) = f_{\boldsymbol{X}}(\boldsymbol{g}^{-1}(\boldsymbol{y}))|\boldsymbol{J}|I_D(\boldsymbol{y})$$

其中 $D \subset \mathbb{R}^n$ 是 y 的密度非零的所有取值的集合, J 是变换 g^{-1} 对 y 的 Jacobi 矩阵.

随机变量数字特征

期望 离散型随机变量 X 的期望

$$E(X) = \sum_{k > 1} x_k p_k \leqslant \infty$$

连续型随机变量 $X \sim f(x)$ 的期望

$$E(X) = \int_{\mathbb{D}} x f(x) \leqslant \infty$$

期望的性质

- 1. 线性性
- 2. 对于相互独立随机变量有:

$$E(X_1X_2\dots X_n)=\prod_{i=1}^n E(X_i)$$

3. 对于 $X \sim f(x), Y = g(X)$, 有 (离散同理):

$$E(\mathbf{Y}) = \int_{\mathbb{R}^d} g(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

马尔科夫不等式 若随机变量 $X \ge 0$,则

$$\forall \varepsilon > 0, \quad P(X \geqslant \varepsilon) \leqslant \frac{E(X)}{\varepsilon}$$

条件期望 称下式为给定 X = x 时随机变量 Y 的条件期望

$$E(Y|X=x) = \int_{\mathbb{R}} y f_{Y|X}(y|x) dy$$

E(Y|X) 是关于 X 的随机变量,且满足**条件期望的平滑公式** (全期望公式):

$$E(E(Y|X)) = E(Y)$$

中位数 随机变量 $X \sim F(x)$, 中位数 m 满足:

$$P(X \ge m) = 1 - F(m - 0) \ge \frac{1}{2}, \quad P(X \le m) = F(m) \ge \frac{1}{2}$$

众数 使得随机变量 X 的概率质量函数 (pmf, X 离散时) 或 | 3. 概率密度函数 (pdf, X 连续时) 达到最大的常数 m_d 称为 Δ

p 分位数 设 $p \in (0,1)$, 随机变量 X 的 p 分位数 Q_p 定义

$$P(X \leqslant Q_p) \geqslant p$$
, $P(X \geqslant Q_p) \geqslant 1 - p$

定义内四分距 $IQR = Q_{0.75} - Q_{0.25}$.

矩 随机变量 X ,满足 $E(|X|^k) < \infty$,则称 $E(X-c)^k$ 为 X 关于 c 的 k 阶矩; 称 $\alpha_k = E(X^k)$ 为 X 的 k 阶原点矩; 称 $\mu_k = E(X - E(X^k))$ 为 X 的 k 阶中心距.

矩母函数 随机变量 X 的矩母函数 (MGF) 定义为

$$M_X(s) = Ee^{sX}$$

矩母函数唯一决定随机变量分布.

方差和标准差 随机变量 X 关于其均值 μ 的二阶矩称为 X 的方差

$$\sigma^2 = Var(X) = E((X - \mu)^2)$$

方差的算术平方根称为 X 的标准差

$$\sigma = \sqrt{\sigma^2}$$

方差的性质

- 1. $Var(X) = E(X^2) \mu^2$;
- 2. $Var(cX) = c^2 Var(X)$, Var(X+d) = Var(X);
- 3. 独立随机变量和的方差等于方差的和;
- 4. $Var(X) \leq E(X-c)^2$, when c = E(X).

协方差 随机变量 X 或 Y 均平方可积且平方均值有限,则 随机变量 X,Y 的**协方差**为

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

协方差的性质

- 1. Cov(X,Y) = Cov(Y,X);
- 2. Cov(X,Y) = E(XY) E(X)E(Y)

$$Cov(aX + bY, cX + dY) =$$

$$(a,b) \begin{pmatrix} Var(X) & Cov(X,Y) \\ Cov(X,Y) & Var(Y) \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix}$$

4. 随机变量的 Cauchy-Schwarz 公式:

$$|Cov(X,Y)| \le \sqrt{Var(X)Var(Y)}$$

相关系数 随机变量 X,Y 协方差存在,定义其相关系数为

$$\rho_{X,Y} = \frac{(X,Y)}{\sigma_X \sigma_Y}$$

独立与不相关 若随机变量相互独立,则随机变量间的相关 系数为0;反之不必成立,但在随机变量服从二元正态分布时 二者等价.

对于任何非退化随机变量 X,Y, 如下四个命题等价;

- 1. *X* 与 *Y* 不相关;
- 2. Cov(X, Y) = 0;
- 3. E(XY) = E(X)E(Y);
- 4. Var(X + Y) = Var(X) + Var(Y).

熵 离散型随机变量的熵定义为

$$H(X) = -\sum_{k=1}^{\infty} p_k \log_2(p_k)$$

连续型随机变量的熵定义为

$$H(X) = -\int_{-\infty}^{+\infty} f_X(x) \ln f_X(x) dx$$

极限定理

对于 i.i.d. 随机变量 X_1, X_2, \dots, X_n , 记 $S_n = \sum_{i=1}^n X_i$,

大数定律
$$\forall \varepsilon > 0$$
, $\lim_{n \to \infty} P\left(\left|\frac{S_n}{n} - \mu\right| \geqslant \varepsilon\right) = 0$

Lindeberg-Levy 中心极限定理 $\left(\frac{\sqrt{n}(S_n/n-\mu)}{\sigma}\right)$ \sim

DeMoivre-Laplace 定理 $X_i \sim B(1,p), \frac{S_n/n - np}{\sqrt{np(1-p)}} \sim$ N(0,1)

统计学基本概念

样本 总体中按一定方式抽取的 n 个个体被称为是样本量为 n 个一个样本,记为 $\mathbf{X} = (X_1, X_2, \dots, X_n)$.

放回抽样得到的样本是简单随机样本, 简单随机样本中 X_1, X_2, \ldots, X_n 满足 i.i.d. 简单样本的联合分布函数为 $\prod F(x_i)$,联合概率密度函数(若存在)为 $\prod f(x_i)$.

常见统计量 完全由样本 X 决定 (不含有参数) 的量被称为 统计量,常见统计量有

- 1. 样本均值: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- 2. 样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$, 其中 $S = \sqrt{S^2}$
- 3. 样本 k 阶原点矩: $a_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k$
- 4. 样本 k 阶中心矩: $m_k = \frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^k$
- 5. 样本偏度系数: $\hat{\beta}_1 = \frac{m_3}{m_2^{3/2}}$
- 6. 样本峰度系数: $\hat{\beta}_2 = \frac{m_4}{m^2}$
- 7. 样本相关系数:

$$\rho_n = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\left(\sum_{i=1}^n (X_i - \bar{X})^2 \sum_{i=1}^n (Y_i - \bar{Y})^2\right)}}$$

8. 次序统计量: 把样本 X 从小到大排列为

$$X_{(1)} \leqslant X_{(2)} \leqslant \cdots \leqslant X_{(n)}$$

9. 样本中位数:

$$m_n = \begin{cases} X_{\left(\frac{n+1}{2}\right)}, & \text{when } n \text{ is odd} \\ \frac{1}{2} \left(X_{\left(\frac{n}{2}\right)} + X_{\left(\frac{n}{2}+1\right)} \right), & \text{when } n \text{ is even} \end{cases}$$

10. 经验分布函数 $F_n(x) = \frac{N(x)}{n}$, 其中 N(x) 是 \boldsymbol{X} 中的样 本数据小干等干 x 的个数

 χ^2 **分布** X 是来自标准正态分布总体的一个简单随机样本

$$X := \sum_{i=1}^{n} X^2$$

的概率密度函数

$$k_n(x) = \frac{1}{\Gamma(\frac{n}{2})2^{\frac{n}{2}}} e^{-\frac{x}{2}} x^{\frac{n-2}{2}} I_{(0,+\infty)}(x)$$

 χ^2 分布的性质:

- 1. 若 $X \sim \chi_n^2$, 则有 E(X) = n, Var(X) = 2n;
- 2. 若 $X \sim \chi_m^2$, $Y \sim \chi_n^2$ 且 X, Y 相互独立, 则 $X + Y \sim$

t 分布 设 $X \sim N(0,1), Y \sim \chi_n^2$, 且 X,Y 相互独立, 称

$$T = \frac{X}{\sqrt{Y/n}}$$

服从自由度为 n 的 t 分布, 记为 $T \sim t_n$. 显然有 t_n 分布的 概率密度函数

$$f_n(t) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}, \quad t \in \mathbb{R}$$

t 分布的性质:

- 1. 当 n=1 时, t 分布就是 Cauchy 分布;
- 2. 若 $T \sim t$, 当 $n \geqslant 2$ 时, E(T) = 0; 当 $n \geqslant 3$ 时 $Var(T) = \frac{n}{n-2}$;
- 3. $\lim_{n\to\infty} f_n(t) = \varphi(t)$,其中 $\varphi(t)$ 是标准正态分布的概率密度函数.

F 分布 设 $X \sim \chi_m^2$, $Y \sim \chi_n^2$, 且 X, Y 相互独立, 称

$$F = \frac{X/m}{Y/n}$$

服从自由度为 m, n 的 F 分布,记为 $F \sim F_{m,n}$. 显然有 $F_{m,n}$ 分布的概率密度函数

$$f_{m,n}(x) = m^{\frac{n}{2}} n^{\frac{n}{2}} \frac{\Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} x^{\frac{m}{2}-1} (mx+n)^{-\frac{m+n}{2}} I_{(0,+\infty)}(x)$$

F 分布的性质:

- 1. 若 $Z \sim F_{m,n}$,则 $\frac{1}{Z} \sim F_{m,n}$;
- 2. 若 $T \sim t_n$, 则 $T^2 \sim F_{1,n}$;

3.
$$F_{m,n}(1-\alpha) = \frac{1}{F_{n,m}(\alpha)}$$

服从自由度为 n 的 χ^2 分布,记为 $X \sim \chi_n^2$. 显然有 χ_n^2 分布 | **正态分布的样本** 设简单样本 X 均来自 $N(\mu, \sigma)$ 的总体,则 | 偏差 $\hat{g}(X)$ 是 $g(\theta)$ 的一个估计量,则偏差为

1. 线性统计量满足参正态分布:

$$T = \sum_{i=1}^{n} c_i X_i \sim N(\mu \sum_{i=1}^{n} c_i, \sigma^2 \sum_{i=1}^{n} c_i^2)$$

- 2. 样本均值 $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$
- 3. 样本方差 $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$
- 4. \bar{X} 与 S^2 相互独立,故 $\frac{\sqrt{n}(\bar{X} \mu)}{S} \sim t_{n-1}$

两个立刻的推论是若m样本量X和n样本量样本Y所 有变量相互独立,且分别来自样本 $N(\mu_1,\sigma_1^2),N(\mu_2,\sigma_2^2)$,则

1.
$$T = \frac{(\bar{X} - \bar{Y} - (\mu_1 - \mu_2))}{S_T} \sqrt{\frac{mn}{m+n}} \sim t_{m+n-2}$$

其中 S_T 满足 $(m+n-2)S_T^2 = (m-1)S_Y^2 + (n-1)S_Y^2$

2.
$$F = \frac{S_X^2}{S_Y^2} \cdot \frac{\sigma_2^2}{\sigma_1^2} \sim F_{m-1,n-1}$$

指数分布的样本 若 X 来自参数为 λ 的指数分布则有

$$2\lambda n\bar{X} = 2X \sum_{i=1}^{n} X_i \sim \chi_{2n}^2$$

参数点估计

点估计 总体分布中的参数 θ_k (例如正态分布 $N(\mu, \sigma^2)$) 中 的一个 MUVE. 的 μ , σ 可以用统计量 $\hat{\theta}(\mathbf{X})$ 去估计, 用数轴上一个点 $\hat{\theta}(\mathbf{x})$ 去 估计一个点 θ 的估计称为**点估计**.

矩估计 用样本矩估计总体矩. 例如用一阶原点矩估计总体 期望,用二阶中心矩估计总体方差等.

最大似然估计 若 X 有联合概率密度函数 $f(x;\theta)$, 其中 θ = $(\theta_1, \theta_2, \dots, \theta_n)$, 固定 x 时, 称关于 θ 的函数 $L(\theta; x) = f(x; \theta)$ θ 的似然函数.

当参数 $\theta = \theta^*$ 时 $L(\theta, x)$ 取最大值,则可将 θ^* 作为 θ 的一个估计值, 称为最大似然估计.

若似然函数光滑,且样本为简单随机样本,则可取 ℓ = $\ln L$ (称为对数似然函数)来化简求解过程.

$$E_{\theta}(\hat{g}(\boldsymbol{X})) - g(\theta)$$

偏差为 0 的估计为无偏估计.

样本数据的加权和是总体期望的无偏估计. 样本方差是 总体方差的无偏估计,二阶中心矩估计不是.

最小方差无偏估计 (MVUE) 均方误差

$$MSE_{\theta}(\hat{\theta}) = E_{\theta}(\hat{\theta}(\boldsymbol{X}) - \theta)^2$$

平均绝对误差

$$MAE_{\theta}(\hat{\theta}) = E_{\theta}(|\hat{\theta}(\mathbf{X}) - \theta|)$$

无偏估计下 $MSE_{\theta}(\hat{\theta}) = Var_{\theta}(\hat{\theta})$. 若 $Var_{\theta}(\hat{\theta}_1) \leq$ $Var_{\theta}(\hat{\theta}_{2}), \forall \theta$, 且存在 θ 使等号成立, 则称 $\hat{\theta}_{1}$ 更有效. 对 于任意无偏估计 $\hat{\theta}$ 满足 $Var_{\theta}(\hat{\theta}^*) \leq Var(\hat{\theta})$ 的 $\hat{\theta}^*$ 被称为最 小方差无偏估计,即在均方误差标准下最有效的估计.

样本数据的加权和作为总体期望的估计时,均值(权为 $\frac{1}{n}$ 的估计最有效.

克拉默-拉奥方差下界 对于 $g(\theta)$ 的无偏估计 $\hat{g}(X)$, 在正则 条件下有

$$Var_{\theta}(\hat{g}(\boldsymbol{X})) \geqslant (g'(\theta))^{2} [nI(\theta)]^{-1}$$

其中 $I(\theta) = E\left(\frac{\partial \ln f(X; \theta)}{\partial \theta}\right)^2$ 被称为费希尔信息函数。

 \bar{X} 是 μ 的 MUVE, 当 μ 已知时, $\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)^2$ 是 σ^2

相合性 若点估计 $\hat{\theta}$ 在样本量 $n \to \infty$ 时依概率趋近于 θ , 则 称 $\hat{\theta}$ 是 θ 的一个 (弱) 相合估计量.

相合性是对一个估计量的最基本要求. 若一个估计量没 有相合性,则无论样本量多大也不能把未知参数估计到任意 精度,这种估计是不可取的.

渐进正态性 若点估计 $\hat{\theta}$ 在样本量 $n \to \infty$ 时

$$\left(\frac{\hat{\theta}(\boldsymbol{X}) - \theta}{Var_{\theta}(\hat{\theta}(\boldsymbol{X}))} \sim N(0, 1)\right)$$

则称 $\hat{\theta}$ 有渐进正态性.

区间估计

置信区间 参数 θ , 统计量 $\hat{\theta}_1, \hat{\theta}_2$, 则参数 θ 的置信系数为 $1-\alpha$ 的区间是 $[\hat{\theta}_1, \hat{\theta}_2]$ 可表示为

$$P(\hat{\theta}_1 \leqslant \theta \leqslant \hat{\theta}_2) = 1 - \alpha$$

 α 是一个小的正数,通常取 0.01,0.05,0.1.

枢轴变量法 可以分为以下步骤:

- 1. 找一个 θ 的良好点估计 T(X), 一般为最大似然估计(例如 $T(X) = \bar{X}$ 估计 $\theta = \mu$);
- 2. 构造枢轴 $S(T,U,\theta)$ 使得 S 分布已知(设其概率分布函数为 F),其中 U 为统计量(例如构造 $\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}\sim N(0,1)$);
- 3. 枢轴变量应满足 $w_{1-\alpha} \leq S \leq w_{\alpha} \Longrightarrow \hat{\theta}_1 \leq \theta \leq \hat{\theta}_2$, 其中 w_{α} 为 F 的上 α 分位数(满足 $F(w_{\alpha}) = 1 \alpha$).

正态总体均值 μ 的置信区间 设置信区间为 $\bar{x} \pm d$,则误差 界限 d 为(用 $\hat{\sigma}$ 估计时总体不必为正态分布)

$$d = \begin{cases} \frac{\sigma}{\sqrt{n}} u_{\frac{\alpha}{2}}, & \text{when } \sigma^2 \text{ is known} \\ \frac{s}{\sqrt{n}} t_{n-1} \left(\frac{\alpha}{2}\right), & \text{when } \sigma^2 \text{ is unknown} \\ \frac{\hat{\sigma}}{\sqrt{n}} u_{\frac{\alpha}{2}}, & \text{when } n > 30 \text{ and } \sigma^2 \text{ is unknown} \end{cases}$$

正态总体方差 σ 的置信区间 总体均值未知,可考虑枢轴估 计 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$

$$\sigma^2 \in \left[\frac{(n-1)s^2}{\chi_{n-1}^2(\frac{\alpha}{2})}, \frac{(n-1)s^2}{\chi_{n-1}^2(1-\frac{\alpha}{2})} \right]$$

两个正态总体均值差 $\mu_2 - \mu_1$ 的置信区间 设置信区间为 $\bar{y} - \bar{x} \pm d$,则误差界限 d 为

$$d = \begin{cases} \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}} u_{\frac{\alpha}{2}}, & \text{when } \sigma_1^2, \sigma_2^2 \text{ are knonw} \\ \sqrt{\frac{m+n}{mn}} s_T t_{m+n-2} \left(\frac{\alpha}{2}\right), & \text{when } \sigma_1^2, \sigma_2^2 \text{ are unknonw} \end{cases}$$

两个正态总体方差比 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信区间 总体均值未知,可考虑枢轴估计 $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}\sim F_{m-1,n-1}$

$$\frac{\sigma_1^2}{\sigma_2^2} \in \left[\frac{s_1^2}{s_2^2} F_{n-1,m-1} \left(1 - \frac{\alpha}{2} \right), \frac{s_1^2}{s_2^2} F_{n-1,m-1} \left(\frac{\alpha}{2} \right) \right]$$

比例 p **的区间估计** 事件 A 在每次试验中发生概率为 p,若 在 n 次试验中发生了 y_n 次,则 p 的 $1-\alpha$ 置信区间为

$$p \in \frac{\hat{p} + \delta}{1 + 2\delta} \pm \frac{u_{\frac{\alpha}{2}}}{\sqrt{n}} \frac{\sqrt{\hat{p}(1 - \hat{p}) + \delta/2}}{1 + 2\delta}$$

其中
$$\hat{p} = \frac{y_n}{n}, \ \delta = \frac{u_{\frac{\alpha}{2}}^2}{2n}.$$

一般来说估计 p 置信区间需要 n > 100,在实际中我们可以忽略 δ ,即 $p \in \hat{p} \pm \frac{u_{\frac{\alpha}{2}}}{\sqrt{n}} \sqrt{\hat{p}(1-\hat{p})}$.

置信区间宽度 $w = \frac{u_{\frac{\alpha}{2}}}{\sqrt{n}} \frac{\sqrt{\hat{p}(1-\hat{p}) + \delta/2}}{1 + 2\delta}$ 时可以计算要求的样本量 $n = \frac{4u_{\frac{\alpha}{2}}^2\hat{p}(1-\hat{p})}{w^2}$.

基本自助置信区间 在总体中抽取样本 $\{x_n\}$,从样本中有放回的抽取一组样本量同样为 n 的样本 $\{x_n\}$,称为一个自助样本,基于自助样本计算统计量 $\hat{\theta}$ 的值,称为 $\hat{\theta}$ 的一个自助版本,重复 B 次,在 B 个自助版本中记 $\frac{\alpha}{2}$ 分位数为 a, $1-\frac{\alpha}{2}$ 分位数为 b,则 θ 的 $1-\alpha$ 基本自助区间为

$$[2\hat{\theta}-b,2\hat{\theta}-a]$$

自助 t **置信区间** 记自助版本 $\hat{\theta}^*$ 的标准差估计为

$$\hat{se}_B(\hat{\theta}_{\star}) = \sqrt{\frac{1}{B-1} \sum_{i=1}^{B} (\hat{\theta}_i^{\star} - \hat{\theta})^2}$$

第 b 个重复下的"T 类型"为

$$t^{(b)} = \frac{\hat{\theta}_b^{\star} = \hat{\theta}}{\hat{se}_R(\hat{\theta}_b^{\star})}$$

其中 $\hat{se}_R(\hat{\theta}_b^*)$ 是对第 b 个自助样本再采用自助法生成 R 个自助版本得到的 $\hat{\theta}_b^*$ 的标准差.

记"T 类型"中的则最终得到的 $\frac{\alpha}{2}$ 分位数为 t_a , $1-\frac{\alpha}{2}$ 分位数为 t_b θ 的 $1-\alpha$ 自助 t 置信区间为

$$[\hat{\theta} - t_b \hat{se}_B(\hat{\theta}), \hat{\theta} - t_a \hat{se}_B(\hat{\theta})]$$

置信限 参数 θ ,统计量 $\bar{\theta}$, $\underline{\theta}$,则参数 θ 的置信系数为 $1-\alpha$ 的置信上限是 $\bar{\theta}$ 可表示为

$$P(\overline{\theta} \geqslant \theta) = 1 - \alpha$$

参数 θ 的置信系数为 $1-\alpha$ 的置信下限是 θ 可表示为

$$P(\theta \geqslant \theta) = 1 - \alpha$$

例如正态总体均值 μ 的置信上限在 σ^2 已知时可以写为 $\bar{x} + \frac{\sigma}{\sqrt{n}} u_{\alpha}$.

假设检验

假设的基本概念 原假设 H_0 、备择假设 H_1 ,常见的假设:两点假设、双边假设、单边假设;检验一个假设时用到的统计量称为假设统计量,使假设得到接受的样本集合(样本所在区域)为接受域,被拒绝的区域为拒绝域,接受域和拒绝域的边界为临界值.

功效函数 功效函数:根据样本 X 所做的一个检验 Ψ ,对应的功效函数为

$$\beta_{\Psi}(\theta) = P_{\theta}(在检验 \Psi 下假设 H_0 被否定)$$

根据功效函数可以得到检验 Ψ 的检验水平 α

$$\beta_{\Psi}(\theta) \leqslant \alpha, \quad \forall \theta in H_0$$

两类错误

- 1. 事实上 H_0 成立时, 若检验 Ψ 拒绝了 H_0 , 则称为第一类错误, 即"弃真错误", 弃真错误发生的概率为 $\alpha_{1\Psi}(\theta) = \beta_{\Psi}(\theta), \theta \in H_0$;
- 2. 事实上 H_0 不成立时, 若检验 Ψ 接受了 H_0 , 则称为第二类错误, 即"存伪错误", 存伪错误发生的概率为 $\alpha_{2\Psi}(\theta) = 1 \beta_{\Psi}(\theta), \theta \in H_1$;

显著性检验 仅考虑第一类错误的检验称为显著性检验,显著性检验的一般方法如下:

- 1. 求出未知参数 θ 的一个较优的点估计 $\hat{\theta}$;
- 2. 寻找一个检验统计量 $T(\hat{\theta}, U, \theta_0)$,使得 $\theta = \theta_0$ 时 T 的 分布已知;
- 3. 根据备择假设的实际意义寻找 T 的拒绝域;
- 4. 计算在原假设成立的条件下犯第一类错误的小于等于 给定的显著性水平 α ,得到一个临界值(T 在 $\theta = \theta_0$ 的 α 分位数,确定拒绝域;
- 5. 根据已有数据计算检验统计量是否在拒绝域中;
- 6. 根据具体问题解释是否能拒绝原假设.

单个正态总体均值的检验 设定假设

- (1) $H_0: \mu \geqslant \mu_0 \leftrightarrow H_1: \mu < \mu_0$
- (2) $H'_0: \mu \leqslant \mu_0 \leftrightarrow H'_1: \mu > \mu_0$
- (3) $H_0'': \mu = \mu_0 \leftrightarrow H_1'': \mu \neq \mu_0$

当 σ^2 已知时,考虑统计量 $Z=\frac{\sqrt{n}(\bar{X}-\mu_0)}{\sigma}\sim N(0,1)$,水平为 α 的检验为

- 1. Ψ : 当 $Z < -u_{\alpha}$ 时拒绝 H_0 ,否则不能拒绝 H_0 ;
- 2. Ψ': 当 $Z > u_{\alpha}$ 时拒绝 H'_{0} , 否则不能拒绝 H'_{0} ;
- 3. Ψ'' : 当 $|Z| > u_{\frac{\alpha}{2}}$ 时拒绝 H''_0 , 否则不能拒绝 H''_0 .

当 σ^2 未知时,考虑统计量 $T = \frac{\sqrt{n}(\bar{X} - \mu_0)}{S} \sim t_{n-1}$,水平 为 α 的检验为

- 1. Φ: 当 $T < -t_{n-1}(\alpha)$ 时拒绝 H_0 ,否则不能拒绝 H_0 ;
- 2. Φ: 当 $T > t_{n-1}(\alpha)$ 时拒绝 H'_0 , 否则不能拒绝 H'_0 ;
- 3. Φ : 当 $|T| > t_{n-1}\left(\frac{\alpha}{2}\right)$ 时拒绝 H_0'' ,否则不能拒绝 H_0''

设立原假设和备择假设的两条原则

- 1. 把已有的经过考验的结论或事实作为原假设 H_0 ;
- 2. 把希望得到的结论放在备择假设 H_1 , 希望能通过拒绝 原假设得到希望得到的结论.

成组比较两个正态总体均值差 设定假设

- (1) $H_0: \mu_1 \mu_2 \geqslant \delta \leftrightarrow H_1: \mu_1 \mu_2 < \delta$
- (2) $H'_0: \mu_1 \mu_2 \leq \delta \leftrightarrow H'_1: \mu_1 \mu_2 > \delta$
- (3) $H_0'': \mu_1 \mu_2 = \delta \leftrightarrow H_1'': \mu_1 \mu_2 \neq \delta$

当 σ^2 已知时,考虑统计量 $Z = \frac{\bar{X} - \bar{Y} - \delta}{\sigma \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim N(0,1)$,水平为 α 的检验为

- 1. g: 当 $Z < -u_{\alpha}$ 时拒绝 H_0 ,否则不能拒绝 H_0 ;
- 2. g': 当 $Z > u_{\alpha}$ 时拒绝 H'_{0} , 否则不能拒绝 H'_{0} ;
- 3. g'': 当 $|Z| > u_{\frac{\alpha}{2}}$ 时拒绝 H''_0 , 否则不能拒绝 H''_0 .

当 σ^2 未知时,考虑统计量 $T=\sqrt{\frac{mn}{m+n}}\frac{\bar{X}-\bar{Y}-\delta}{S_T}\sim t_{m+n-2}$,水平为 α 的检验为

- 1. h: 当 $T < -t_{m+n-2}(\alpha)$ 时拒绝 H_0 ,否则不能拒绝 H_0 ;
- 2. h': 当 $T > t_{m+n-2}(\alpha)$ 时拒绝 H'_0 , 否则不能拒绝 H'_0 ;
- 3. h'': 当 $|T| > t_{m+n-2} \left(\frac{\alpha}{2}\right)$ 时拒绝 H''_0 , 否则不能拒绝 H''_0 .

概率论与数理统计

成对比较两个正态总体均值差 构造新的样本 $Z_i = X_i - Y_i$, 并对 Z 的均值做假设检验.

正态总体方差的检验 设定假设

- (1) $H_0: \sigma^2 \geqslant \sigma_0^2 \leftrightarrow H_1: \sigma^2 < \sigma_0^2$
- (2) $H'_0: \sigma^2 \leq \sigma_0^2 \leftrightarrow H'_1: \sigma^2 > \sigma_0^2$
- (3) $H_0'': \sigma^2 = \sigma_0^2 \leftrightarrow H_1'': \sigma^2 \neq \sigma_0^2$

考虑统计量 $\chi^2 = \frac{(n-1)S^2}{\sigma_n^2} \sim \chi_{n-1}^2$, 水平为 α 的检验为

- 1. ϕ : 当 $\chi^2 < \chi^2_{n-1}(1-\alpha)$ 时拒绝 H_0 , 否则不能拒绝 H_0
- 2. ϕ' : 当 $\chi^2 > \chi^2_{n-1}(\alpha)$ 时拒绝 H'_0 , 否则不能拒绝 H'_0 ;
- 3. ϕ'' : 当 $\chi^2 < \chi^2_{n-1} \left(1 \frac{\alpha}{2}\right)$ 时拒绝 H_0'' ,否则不能拒绝

两个正态分布总体方差比的检验 设定假设

- (1) $H_0: \frac{\sigma_1^2}{\sigma_2^2} \geqslant b \leftrightarrow H_1: \frac{\sigma_1^2}{\sigma_2^2} < b$
- (2) $H'_0: \frac{\sigma_1^2}{\sigma_2^2} \leqslant b \leftrightarrow H'_1: \frac{\sigma_1^2}{\sigma_2^2} > b$
- (3) $H_0'': \frac{\sigma_1^2}{\sigma_2^2} = b \leftrightarrow H_1'': \frac{\sigma_1^2}{\sigma_2^2} \neq b$

考虑统计量 $F = \frac{S_1^2}{hS_2^2} \sim F_{m-1,n-1}$,水平为 α 的检验为

- 1. φ : 当 $F < F_{m-1,n-1}(1-\alpha)$ 时拒绝 H_0 ,否则不能拒绝 H_0 ;
- 2. φ' : 当 $F > F_{m-1, n-1}(\alpha)$ 时拒绝 H'_0 , 否则不能拒绝 H'_0
- 3. φ'' : 当 $F < F_{m-1,n-1}\left(1-\frac{\alpha}{2}\right)$ 时拒绝 H_0'' ,否则不能 拒绝 H''.

比例 p 的检验 设 X 是 0-1 分布总体 B(1,p) 的一个样本. **似然比的检验** 考虑假设 关于 p 设定假设

- (1) $H_0: p \leqslant p_0 \leftrightarrow H_1: p > p_0$
- (2) $H'_0: p \geqslant p_0 \leftrightarrow H'_1: p < p_0$
- (3) $H_0'': p = p_0 \leftrightarrow H_1'': p \neq p_0$

考虑统计量 $X = \sum_{i=1}^{n} X_i \sim B(n,p)$,由分布函数 $F_p(C) =$

 $\sum_{n=0}^{C} C_n^i p^i (1-p)^{n-i}$. 常见的对应的三个检验方法为

1. ψ : 当 X > C 时拒绝 H_0 , 否则不能拒绝 H_0 . 其中 C由下式决定

$$F_{p_0}(C)1-\alpha$$

2. ψ' : 当 X < C' 时拒绝 H'_0 , 否则不能拒绝 H'_0 . 其中 C'由下式决定

$$F_{p_0}(C'-1)=\alpha$$

3. ψ'' : 当 $C_1 \leq X \leq C_2$ 时拒绝 H_0'' , 否则不能拒绝 H_0'' . 其中 C_1, C_2 由下式决定

$$F_{p_0}(C_1-1)=\frac{\alpha}{2}, \quad F_{p_0}(C_2)=1-\frac{\alpha}{2}$$

以检验 ψ 为例,实际上 C 作为整数不一定能取到,即 C 满

$$F_{p_0}(C) < 1 - \alpha < F_{p_0}(C+1)$$

一种常见的随机化检验是 ψ_0 : 当 $X\leqslant C$ 时不拒绝 H_0 , 当 X > C + 1 时拒绝 H_0 , 当 X = C + 1 时,从 [0,1] 中任取一 个随机数 u,若下式成立则拒绝 H_0 否则不拒绝:

$$u > \frac{1 - \alpha - F_{p_0}(C)}{F_{p_0}(C+1) - F_{p_0}(C)}$$

$$H_0: \theta \in \Theta_0 \leftrightarrow H_1: \theta \in \Theta_1 = \Theta/\Theta_0$$

设样本 X 有联合概率质量函数 $f(x;\theta)$, 称下面统计量为上 述假设的似然比

$$LR(\boldsymbol{x}) = \frac{\sup_{\theta \in \Theta} f(\boldsymbol{x}; \theta)}{\sup_{\theta \in \Theta_0} f(\boldsymbol{x}; \theta)}$$

而一个似然比的检验可以写为: ϕ : 当 LR(x) > c 时拒绝原 假设 H_0 , 否则不能拒绝 H_0 . 其中常数 c 由检验水平决定 (此 时可以通过 LR(x) 的分布确定)

似然比的极限分布 设 $\dim \Theta - \dim \Theta_0 = t$,则在原假设 H_0 成立之下, 当样本量 $n \to \infty$ 时有

$$P(2 \ln LR(\boldsymbol{X}) \leqslant x) = F_{\chi^2}(x), \quad \forall x \in \mathbb{R}$$

p **值** 抽象的定义 p 值为 P(得到和当前样本下检验统计量 T 之值一样或更计算值 | 原假设下), 对应的检验可以写为 ϕ : 当 p 值 $< \alpha$ 时, 拒绝原假设.

例如正态总体均值的检验 $H_0: \mu = 2 \leftrightarrow H_1: \mu > 2$, 方差 $\sigma^2 = 1$ 已知, 当前样本 X 的均值为 3.5. 和上述一样 考虑检验统计量 $T = \frac{\sqrt{n}(\bar{X} - 2)}{1}$, 当前样本下检验统计量为 $t_{\text{obs}=3.5}$, 故对应的 p 值写为 $P(T \ge t_{\text{obs}}|H_0) = 1 - \Phi(t_{\text{obs}})$, 其中 H_0 即代表 $\mu = 2$ 我们已代入检验统计量中.

非参数假设检验

理论分布完全已知且有限个取值的拟合优度检验 总体 X 的值域为 $\{a_1, a_2, \ldots, a_k\}$, 抽取一个样本量为 n 的简单样本。 其中有 n_i 次取 a_i ,则

$$Z = \sum_{i=1}^{k} \frac{n_i^2}{np_i} - n$$

在原假设 $H_0: P(X=a_i) = p_i, \forall i \leftrightarrow H_1: \exists j, P(X=a_i) \neq i$ p_i 成立时, 当 $n \to \infty$, Z 的分布趋于自由度为 k-1 的 χ^2 分布. 对应的检验写为:

 φ : 当 $Z > \chi^2_{k-1}(\alpha)$ 时拒绝 H_0 ,否则不能拒绝 H_0 .

同时定义数据对理论分布的"拟合优度"

$$p(Z_0) = P(Z \geqslant Z_0) = 1 - F_{\chi_{b-1}^2}(Z_0)$$

理论分布类型已知但含有有限个未知参数 总体 X 的值域 为 $\{a_1, a_2, \ldots, a_k\}$,但含有 r 个未知参数 $\theta_1, \theta_2, \ldots, \theta_n$ (r < r)k-1). 抽取一个样本量为 n 的简单样本, 其中有 n_i 次取 a_i ,

$$Z = \sum_{i=1}^{k} \frac{n_i^2}{np_i} - n$$

在原假设 $H'_0: P(X=a_i) = p_i(\theta_1, \theta_2, \dots, \theta_n), \forall i$ 成立时, 当 $n \to \infty$, Z 的分布趋于自由度为 k-r-1 的 χ^2 分布. 对应 的检验写为:

 ϕ : 当 $Z > \chi^2_{k-r-1}(\alpha)$ 时拒绝 H_0 ,否则不能拒绝 H_0 .

列联表检验 检验属性 A, B 独立的假设 H_0 , 我们设 A, B分别处于水平 i,j 的样本数量为 $n_{i,j}$,且 $n_{i\cdot} = \sum n_{ik},\, n_{\cdot j} =$ $\sum_{k=1}^{n} n_{kj}$,则可以写出检验统计量

$$Z = \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{(nn_{ij} - n_{i.}n_{.j})^{2}}{nn_{i.}n_{.j}} \sim \chi^{2}_{(a-1)(b-1)}$$

对应的检验写为

 ψ : 当 $Z > \chi^2_{(a-1)(b-1)}(\alpha)$ 时拒绝 H_0 ,否则不能拒绝 H_0 .

随机变量分布及其数字特征

离散随机变量

分布名称	概率质量函数 (pmf)		方差
0-1 分布	P(X=1) = p	p	
二项分布 $X \sim B(n,p)$	$P(X_r = k) = C_n^k p^k (1-p)^k = b(n, p, k)$	np	np(1-p)
负二项分布(Pascal 分布) $X \sim NB(n,p)$	$P(X = k) = C_{k-1}^{r-1} p^r (1-p)^{k-r} = nb(r, p, k)$	$\frac{n}{p}$	
Poisson 分布 $X \sim P(\lambda)$	$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ

连续随机变量

分布名称	概率密度函数 (pdf)	期望	方差
均匀分布 $X \sim U(a,b)$	$f(x) = \frac{1}{b-a}I_{(a,b)}(x)$	$\frac{a+b}{2}$	$\frac{b-a}{12}$
指数分布 $X \sim Exp(\lambda)$	$f(x) = \lambda e^{-\lambda} I_{(0,\infty)}(x)$	λ^{-1}	λ^{-2}
正态分布 $X \sim N(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, x \in \mathbb{R}$	μ	σ^2
Cauchy 分布	$f(x) = \frac{1}{\pi(1+x^2)}$	不存在	

多维 (二元) 随机变量

二元分布名称	联合概率密度函数 (pdf)	期望	方差	相关系数
均匀分布	$f(x,y) = \frac{1}{ G }I_G(x,y)$, G 为面积为 $ G \neq 0$ 的有界区域	/	/	/
二元正态分布 $X \sim N(a, b, \sigma_1^2, \sigma_2^2, \rho)$	$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-a)^2}{\sigma_1^2} - 2\rho \frac{(x-a)(y-b)}{\sigma_1\sigma_2} + \frac{(y-b)^2}{\sigma_2^2} \right] \right\}$	EX = a, EY = b	$Var X = \sigma_1^2, Var Y = \sigma_2^2$	ρ
n 元正态分布	$f(\boldsymbol{x}) = \frac{1}{\sqrt{(2\pi)^n \boldsymbol{A} }} \exp\left\{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^\top \boldsymbol{A}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right\}, A_{ij} = \rho_{ij}\sigma_i\sigma_j$	$EX_i = \mu_i$	$Var X_i = A_{ii}$	$Cov(X_i, X_j) = \frac{A_{ij}}{\sigma_i \sigma_j}$

课本涉及的典型问题

第一章:事件及其概率

- 1. Bertrand 悖论
- 2. 敏感性问题调查
- 3. 波利亚罐子模型
- 4. 核酸检测 (Bayes)
- 5. 小概率事件
- 6. 两两独立而不相互独立
- 7. 递推法
- 8. 配对问题
- 9. 贝叶斯公式与垃圾邮件识别
- 10. 三门问题

第二章: 随机变量及其分布

- 1. 数字通信及可靠性
- 2. 标记重捕模型
- 3. Banach 火柴问题
- 4. 负二项分布的 Poisson 近似
- 5. Weibull 分布

第三章: 所谓随机变量及其分布

- 1. 会面问题
- 2. 独立随机变量的和(卷积)
- 3. 指数分布随机变量的和与差
- 4. 正态分布随机变量的和
- 5. 独立随机变量商的商
- 6. Cauchy 分布

7. 最大值和最小值的分布

- 8. 系统可靠性研究
- 9. Simpson 悖论

第四章: 随机变量的数字特征和极限定理

- 1. 巴格达窃贼问题
- 2. 随机变量标准化
- 3. 偏度系数和峰度系数
- 4. 超几何分布的期望
- 5. 配对问题
- 6. 游程问题

第五章: 统计学基本概念

1. $X \sim U(0,\theta)$ 总体抽取的简单样本中,统计量 $X_{(n)}$ 的抽样分布

2. Γ 分布

第六章:参数点估计

- 1. 总体标准差的无偏估计
- 2. 德军坦克问题

第七章:区间估计

1. "足球赛会杀人"巧合

第八章: 假设检验

- 1. 符号检验
- 2. 置信区间和假设检验之间的关系
- 3. 多重假设检验

* 祝考试顺利! *